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We apply the stability criterion we recently proposed for a general wetting functional[Phys. Rev. E68,
012601(2003)] to find out whether straight liquid bridges can be stable when subject to line tension of either
sign. Our main conclusion is that, even when the line tension is negative, a straight liquid bridge can be stable,
and so observable, provided that the line tension is not too large in absolute value.
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I. INTRODUCTION

The concept of line tension was introduced by Gibbs[1]
to describe the excess free energy arising along a three-phase
line, that is, along a curve where three distinct phases coex-
ist. In Gibbs’s original formulation, the line tension was in-
troduced as the analog to the surface tension for a two-phase
surface. Line tension is relevant to equilibrium only at nano-
metric length scales, which have recently become accessible
to experiments[2–5]. However, extracting information on
line tension from these experiments is a difficult task, and so
different results are available that attribute to the line tension
values also differing by many orders of magnitude(typically,
these values range from 10−12 to 10−5 N). Moreover, even
the sign of the line tension is subject to controversy. Similar
ambiguities also arise in theoretical models that indeed pre-
dict disparate values for the line tension and disagree on its
sign as well. It has been claimed that line tension cannot be
negative, by a stability argument[6–8]. Recently, we pro-
posed a general stability criterion for wetting functionals that
could help to explore the consequences of negative line ten-
sions [9,10]. In fact, in Ref. [9] we already performed a
stability analysis for a liquid bridge lying on a flat substrate,
in the special case where the contact angle isp /2. We
proved that, although a negative line tension favors the onset
of instability, if its modulus is not too large, the instability
occurs only for modes that are too wiggly to be admissible
within the range of validity of the model. It is our purpose
here to extend such a stability analysis to see the influence of
the contact angle when it ranges in the whole intervals0,pd.

Liquid bridges are special droplets, which we expect to be
unstable when they become too slender, as suggested by the
classical Rayleigh instability that should indeed be repro-
duced exactly in this context when the contact angle isp /2
and the line tension is absent. The major conclusion of our
study is that liquid bridges with negative line tension can
also be stable, and so observable, provided that the line ten-
sion is not too large in absolute value. Nonetheless, as our
analysis will show, this conclusion, which here is rigorously
proved for liquid bridges, cannot be naively extended to
other droplet morphologies, although one would expect it to
be qualitatively valid in general.

The paper is organized as follows. In Sec. II, we describe
the mathematical model employed here and we recall our
stability criterion for the reader’s ease. In Sec. III we solve

the eigenvalue problem involved in our criterion by combin-
ing both graphical and numerical methods. Finally, Sec. IV
collects our conclusions. Most of the mathematical details
left out in the main body of the paper are explained in the
closing Appendix.

II. MATHEMATICAL SETTING

The line tension along a three-phase contact can be de-
fined in rather different ways. Here, we use a continuum
approach where the excess free energy is modeled as a line
integral on thecontact lineC, that is, the contour where the
liquid droplet, the substrate, and the environment fluid are in
contact. Moreover, for simplicity, we assume that the line
tensiong is constant alongC. Thus, the free-energy func-
tional F that governs the equilibrium of a liquid dropletB is
given by

F fBg = tE
S

da+ st − wdE
S*

da+ gE
C

ds, s1d

wheret.0 is the surface tension between the droplet and
the environment fluid,S is the surface of the droplet in con-
tact with the environment, andS* is the surface of the droplet
in contact with the substrate. The positive constantw, re-
ferred to as theadhesion potential, accounts for the interac-
tion between the droplet and the substrate, which is assumed
flat and chemically homogeneous. Finally,a is the area mea-
sure on]B=SøS* ands is the arclength alongC. To arrive
at the Euler-Lagrange equation associated with the functional
F, we perturb a pointp[]B into p«=p+«u+«2v, whereu
andv are regular vector fields defined on]B. As explained in
Ref. [9], the second-order termv in the perturbation is in-
deed needed to preserve up to second order the constraints
that a droplet on a substrate is subject to. The Euler-Lagrange
equation of the functional(1) is obtained by setting the first
variationdF of F equal to zero:

dF fug ª UdF
de
U

e=0
= 0.

In the absence of gravity or other external fields, the Euler-
Lagrange equation requiresS to be a surface with constant
mean curvature, which, in particular, makes a circular cylin-
der an admissible solution. In general, along the contact line
C, the following natural boundary condition is to be satisfied:
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t cosqc + t − w = gkg
* , s2d

whereqc is the contact angle, which here is the angle be-
tween the substrate and the bridge’s tangent plane along the
contact lineC (see Fig. 1), andkg

* is the geodesic curvature of
C relative to the substrate[9,11]. Since botht and w are
taken to be constant, Eq.(2), which is the celebrated Young
equation, requires thatqc is constant along the contact lineC.

The stability of any equilibrium configuration for a drop
is related to the sign of the second variation ofF, defined as

d2F fug ª Ud2F
de2 U

e=0
.

Precisely, the notion of stability employed throughout this
paper is the one that would more properly be namedlocal:
according to its definition, an equilibrium shapeS is said to
be stable whenever the second variationd2F is positive for
all admissible perturbations ofS (see, e.g., Ref.[12], Chap.
V).

The only droplets we shall consider here are incompress-
ible liquid bridges, that is, bodies resembling cylindric lenses
with axis along a given direction, sayez (see Fig. 1). The
cross section of a bridge with every plane orthogonal toez is
a circular sector of radiusR; the contact lineC is split into
two congruent straight-line segments of lengthL. Clearly, in
this casekg

* =0, and by applying the general results obtained
in Ref. [9] we can write the second variation of the free-
energy functional(1) as

d2F fug = tE
S
Hu¹sunu2 −

1

R2un
2Jda+E

C
Hgsus8d

2

−
t

R
cosqc sinqcus

2Jds, s3d

whereun is the component of the perturbationu along the
unit normaln to S, andus is related toun on C through the
equation

un = sinqcus. s4d

No explicit contribution in the second variation(3) arises
from the adhesion potentialw: this follows from the con-
straintun=0 imposed on the perturbationu on S* to guaran-
tee thatu mapsS* onto another surface on the substrate(see
Refs.[9,10] for further details).

According to Eq.(4), we can replaceus with un in Eq. (3)
to make the second variationd2F a quadratic functional of
un. d2F is positive whenever its minimum on the unit sphere
in L2sSd is positive. Thus, we subjectd2F to the normaliza-
tion constraint

E
S

un
2da= 1, s5d

which, since the liquid bridge is taken to be incompressible,
supplements the constraint on the average ofun,

E
S

unda= 0. s6d

As discussed in Ref.[9], the minimum of the functional(3)
on the manifold(5) coincides with the minimum eigenvalue
m of the following problem:

Dsun + Sm +
1

R2Dun + l = 0 on S, s7d

sin2 qc=sun · nS− jun9 −
1

R
sinqc cosqcun = 0 along C.

s8d

Here, =s and Ds are, respectively, the surface gradient and
the surface Laplacian defined onS, a prime denotes differ-
entiation along the arclengths of C, andl is the Lagrange
multiplier associated with the constraint(6). Moreover, the
unit vector nS is the unit conormal ofC on S, that is, the
outward unit vector orthogonal toC on S (see Fig. 1). Fi-
nally, the ratio

j ª
g

t
, s9d

which bears the physical dimensions of a length, is a central
quantity in our development; in principle, likeg, it can have
either sign. The free surfaceS of the bridge can easily be
described in the cylindrical coordinatesq and z shown in
Fig. 1: formally,

S: ; hsq,zduq [ f− qc,qcg,z[ f0,Lgj.

Here we setusq ,zdªunsq ,zd, for simplicity. Since

=su · nS=
]u

]q
and Dsu =

1

R2

]2u

]q2 +
]2u

]z2 ,

we can recast Eqs.(7) and (8) as

1

R2

]2u

]q2 +
]2u

]z2 + Sm +
1

R2Du + l = 0, s10d

FIG. 1. (a) Sketch of a liquid bridge lying on a flat, homoge-
neous substrate. The bridge is a straight circular cylindrical sector,
of lengthL in theez direction.(b) Every planar cross section of the
bridge orthogonal toez is a circular sector of radiusR, centered at
the pointO. The contact angleqc is the angle between the substrate
and the bridge’s tangent plane along the contact lineC. The unit
vectornS is the conormal ofC on S, that is, the outward unit vector
orthogonal toC on S. Finally, q is the polar angle, which is often
employed below.
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U 1

R
sin2 qc

]u

]q
U

q=qc

U− j
]2u

]z2U
q=qc

−
1

R
sinqc cosqcusqc,zd

= 0. s11d

We think of the bridge as being infinite along its axis: in the
same spirit as the classical Rayleigh instability, we treatL as
the length over which typical distortions of the bridge’s
shape take place, and so we require that

usq,0d = usq,Ld = 0, ∀ q [ f0,qcg. s12d

For simplicity, we also limit our attention to symmetric per-
turbations, which satisfy the condition

U ]u

]q
U

q=0
= 0, ∀ z[ f0,Lg. s13d

The cross section’s sizeR is taken throughout as given, al-
though it will enter our discussion only through two dimen-
sionless ratios, namely,R/L andR/j. For most materialsuju
is much smaller than any macroscopic length, and one would
be led to assume thatR/ uju@1. Here this assumption is not
made, as we also wish to consider the possibility thatR is not
a macroscopic length. Rayleigh’s instability, which in a full
liquid cylinder happens whenLù2pR, will be taken as a
reference case below: in the absence of line tension, it should
be reproduced by a liquid bridge whenqc=p /2.

III. STABILITY ANALYSIS

This section, which is divided into two parts, concerns the
stability analysis of liquid bridges against perturbations sat-
isfying both the incompressibility constraint(6) and Eqs.
(12) and (13). In the first part, we supposej.0 and prove
general results that are then specialized to the asymptotic
limits where either the line tension is very small or it is very
large. In the second part, we study the case wherej,0.

A. Positive line tension

Following the approach adopted by Roy and Schwartz
[13], we look for solutions to Eqs.(10) and(11) in the form

usq,zd = u0sqd + o
n=1

`

sinSnp

L
zDunsqd, s14d

with n[N. Since for a cylinder the incompressibility condi-
tion (6) reads

E
0

L

dzE
0

qc

usq,zddq = 0,

we conclude from Eq.(14) that only even modes occur, that
is,

usq,zd = u0sqd + o
n=1

`

sinS2np

L
zDunsqd. s15d

Moreover, the constraint(6) reduces to a restriction on the
lowest modeu0sqd,

E
0

qc

u0sqddq = 0. s16d

However, imposing Eq.(12) amounts to settingu0sqd;0
and so the projection of Eq.(10) onto the eigenspace corre-
sponding ton=0 yieldsl=0 immediately. For higher modes,
inserting Eq.(15) into Eq. (10) yields

ün + smR2 + 1 −%ndun = 0, ∀ n ù 1, s17d

where we have set

%n ª S2pnR

L
D2

, s18d

and an overdot stands for differentiation with respect toq.
Finally, by replacing Eq.(15) in Eq. (11) we readily obtain

sin2 qcu̇nsqcd + S j

R
%n − sinqc cosqcDunsqcd = 0, ∀ n ù 1,

s19d

where every functionun obeys

u̇ns0d = 0, s20d

as a consequence of Eq.(13).
Our purpose here is to find all the modes for which Eqs.

(17)–(20) possess a nontrivial solution withm.0. If these
are not all possible modes, then the bridge will be found
unstable against the ones for whichm,0. Since the ratio
R/L is not fixed, we will label every mode by%n: our strat-
egy will be to find for each admissible%n the corresponding
eigenvaluem. Guided by the classical Rayleigh instability,
one would expect that for%n sufficiently large, a bridge can
always be made stable: our analysis will show the effect of
line tension, and especially of its sign, on this expectation.

The solutions to Eqs.(17)–(20) have different qualitative
behaviors, according to the sign of the parameter

sn ª mR2 + 1 −%n. s21d

Whensn=0, the only nontrivial solution of Eq.(17) that also
satisfies Eq.(20) is unsqd=B, with B a constant. The corre-
sponding mode depends only uponz: hereafter, we shall refer
to it as to alinear mode. The constantB can be determined
uniquely by imposing the constraint(5). Equation(19) gives
the necessary conditions for this mode to exist, that is,

0 , %n = 1 +mR2 =
R

j
sinqc cosqc. s22d

It follows from these equations that, if%n.1, m is positive,
and so the corresponding linear modes are stable. On the
contrary, when%n,1, it is possible to make the liquid bridge
unstable. What actually happens is decided by the right-hand
side of Eq.(22). When j cosqcø0 no linear mode exists;
when j cosqc.0 there are both stable and unstable linear
modes, and the latter prevail wheneveruju, and hence the
strength of the line tensionugu is large enough. Thus, the
analysis of linear modes can be summarized as follows: If
sR/jdsinqc cosqc.1, then the admissible linear modes
have %n.1 and are stable; if 0, sR/jdsinqc cosqc,1,
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then the admissible linear modes have%n,1 and they are
unstable.

When sn.0, the solutions to Eq.(17) that satisfy the
symmetry requirement(20) areunsqd=A cosÎsnq, where the
constantA is uniquely determined by Eq.(5): since the
boundary condition(19) is homogeneous,A plays no role in
the following. We shall refer to these solutions as thecircu-
lar modes. By inserting a circular mode into Eq.(19), after
some algebraic manipulations we arrive at the condition

%n =
R

j
sinqcScosqc +

sinqc

qc
xn tanxnD¬ fcsxnd, s23d

where we have setxnª
Îsnqc. Similarly, whensn,0 the

solutions to Eq.(17) that also obey Eq.(20) are proportional
to unsqd=coshÎ−snq. Hereafter, we will refer to these func-
tions as thehyperbolicmodes. When a hyperbolic mode is
inserted into Eq.(19) we readily obtain

%n =
R

j
sinqcScosqc −

sinqc

qc
xn tanhxnD¬ fhsxnd,

s24d

where now we have setxnª
Î−snqc. Had we also allowed

the odd modes in Eq.(14), only a few specific circular modes
would have been selected by the boundary equation(19), all
of which could be shown to be stable. Thus, our stability
analysis is not restricted by the choice of symmetric pertur-
bations made in Eq.(15).

For a given%n, both Eqs.(23) and (24) determine the
admissible rootsxn, which in turn, through Eq.(21), deter-
mine the corresponding eigenvaluem:

mR2 = %n − 1 ± S xn

qc
D2

, s25d

where the plus and the minus sign apply to circular and hy-
perbolic modes, respectively. For later reference, we indicate
by Q the positive quadrant in thesxn,%nd plane:

Qª hsxn,%nd,xn ù 0,%n ù 0j.

By Eq. (25), the loci inQ that correspond to a fixed value of
m are parabolas, and parabolas corresponding to different
values ofm never intersect each other, as they are obtained
from one another by translation along the%n axis. In particu-
lar, the marginal parabola obtained from Eq.(25) when m
=0 for either circular or hyperbolic modes dividesQ into
two regions: the region underneath the marginal parabola
hosts the pairssxn,%nd for which the associated mode is
stable. Parabola(25) is called marginal because it corre-
sponds to marginal stability of the liquid bridge to either
circular or hyperbolic modes. The pairssxn,%nd lying on the
marginal parabola will play a special role in the graphical
discussion of our stability analysis. They represent the points
where the graphs of the functionsfc and fh emanate in both
the stable and the unstable manifolds: following the stable
branches of these graphs will identify the stable admissible
modes%n.

We now treat separately circular and hyperbolic modes:
combining the results of these parallel analyses will lead us

to the stability diagram of liquid bridges with both positive
and negative line tension. Here we takej.0.

The equation of the marginal parabola for circular modes
is

%n = 1 −S xn

qc
D2

. s26d

Whenever a pairsxn,%nd that solves Eq.(23) lies in the
regionSc shown in Fig. 2, the corresponding circular mode
is stable. On the contrary, when a pairsxn,%nd lies in the
regionUc, the corresponding circular mode is unstable. The
pairs sxn,%nd that lie on the marginal parabola(26) are ob-
tained by inserting Eq.(26) into Eq. (23); the following
equation then results:

1 −S x

qc
D2

=
R

j
sinqcScosqc +

sinqc

qc
x tanxD = fcsxd,

s27d

where the mode indexn has been dropped because the roots
of Eq. (27) are independent ofn. Since the marginal parabola
in Q is decreasing andfc has separate increasing branches,
the liquid bridge is stable against every circular mode for
which

%n . %̄ ª 1 −S x̄

qc
D2

, s28d

wherex̄ is the smallest root of Eq.(27), whenever there is at
least one. In such a case, it follows from Eq.(18) that all
circular modes are stable provided that the one forn=1 is
stable. To seekx̄, we consider two different regimes accord-
ing to whetherqc[ s0,p /2d or qc[ sp /2 ,pd; the limit case
qc=p /2 was already discussed in Ref.[9]. When

FIG. 2. The marginal parabola(26) divides the positive quadrant
Q into two setsSc and Uc. The pairssxn,%nd that belong toSc

correspond to positive values ofm, whereas the pairssxn,%nd that
belong toUc correspond to negative values ofm. Given a value of
%n, when the rootxn of Eq. (23) is such thatsxn,%nd[Uc, the liquid
bridge is unstable against the corresponding circular mode, while it
is stable if sxn,%nd[Sc. The parabola(26) is called marginal be-
cause it corresponds to marginal stability of the liquid bridge
against circular modes.
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qc[ s0,p /2d, no intersection between the graph of the func-
tion fc and the parabola(26) exists in the setQ for

R

j
sinqc cosqc . 1 s29d

(see Fig. 3).
Moreover, again by the monotonicity offc in s0,p /2d, we

conclude that its graph lies in the stable manifoldSc. Thus,
when the inequality(29) holds, the smallest eigenvaluemmin
is strictly positive, and the bridge is stable against all circular
modes. On the contrary, when

0 ,
R

j
sinqc cosqc , 1 s30d

Eq. (27) possesses a unique solutionx̄[ s0,qcd, and(28) is
the corresponding stability condition.

Equation(27) has a unique rootxn[ s0,p /2d also when
qc[ sp /2 ,pd, as shown in Fig. 4, and the stability threshold
formally coincides with(28). As an aside, we note that Eq.
(27) has no further rootsxù0, whenqc[ sp /2 ,pd. In fact,
x tanx is a monotonically increasing function whenx is in

the rangesp /2 ,pd, so that the functionfcsxd attains its maxi-
mum in sp /2 ,pd at x=p, where it has the same, negative
value as atx=0.

To study the hyperbolic modes, we write the marginal
parabola in the form

%n = 1 +S xn

qc
D2

. s31d

The parabola(31) divides the quadrantQ into a stable region
Sh and an unstable regionUh, as sketched in Fig. 5.

By inserting Eq.(31) into Eq. (24) we arrive at

1 +S x

qc
D2

=
R

j
sinqcScosqc −

sinqc

qc
x tanhxD = fhsxd.

s32d

Since the marginal parabola is now increasing inQ while fh
is decreasing, the stability condition(28) is here replaced by

%n . %̄ = 1 +S x̄

qc
D2

, s33d

where x̄ is now the unique root of Eq.(32), whenever it
exists. We now study Eq.(32) assuming first that
qc[ s0,p /2d. When inequality(29) holds, by plotting the
graph of the functionfh we readily conclude that Eq.(32)
has a unique positive rootx̄ (see Fig. 6). Although a com-
parison between the thresholds(28) and (33) would show
that hyperbolic modes impose a more stringent requirement
on the stability of liquid bridges than circular modes, this is
indeed the case only when both Eqs.(27) and (32) possess
positive roots, which never happens. When inequality(30)
holds, which is the condition for a positive rootxn of Eq. (23)
to exist, Eq.(32) has no positive root. Then, the graph of
fhsxnd lies entirely away from the stable setSh, and we con-
clude that the hyperbolic modes for which

FIG. 3. The graphical solution of Eq.(27) can be obtained by
seeking the intersections inQ between the parabola(26) and the
function fc, when bothqc[ s0,p /2d andj.0 are given. Here we
have plotted two graphs of the functionfcsxnd: one for
sR/jdsinqc cosqc,1 (solid curve) and the other for
sR/jdsinqc cosqc.1 (dashed curve). In the former case, Eq.(27)
has a unique rootx̄.0 whereas in the latter case it has none.

FIG. 4. When qc[ sp /2 ,pd and j.0, Eq. (27) still has a
unique rootx̄[ s0,p /2d.

FIG. 5. The parabola(31) divides the positive quadrantQ into
two setsSh andUh. The pairssxn,%nd that belong toSh correspond
to positive values ofm, whereas the pairssxn,%nd that belong toUh

correspond to negative values ofm. For given%n, when the positive
solution xn to Eq. (32) is such thatsxn,%nd[Uh, then the liquid
bridge is unstable against the corresponding hyperbolic mode,
whereas it is stable ifsxn,%nd[Sh. The parabola(31) corresponds
to marginal stability of the liquid bridge against hyperbolic modes.
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0 ø %n ,
R

j
sinqc cosqc , 1 s34d

make the liquid bridge unstable. Finally, when the contact
angleqc is in sp /2 ,pd, Eq. (32) has no positive root inQ:
since the functionfhsxd is negative forxù0, no hyperbolic
mode exists.

We need now to combine the results of our analysis for all
separate modes to arrive at the full stability diagram. This
requires examining the role ofR/j in the preceding conclu-
sions. We first focus attention on the limiting cases where
either R/j!1 or R/j@1. In particular, we are concerned
with the asymptotic behavior of the rootx̄ to either Eq.(27)
or Eq.(32). We defer the details of the asymptotic analysis to
the Appendix; here we collect only the results of this analy-
sis.

We first suppose thatqc[ s0,p /2d and thatR/j!1 so
that the line tension is dominant and inequality(30) holds.
Under these assumptions, the stability limit%̄ in Eq. (33)
becomes

%̄ < tanqcSR

j
D . s35d

Thus, when the line tension is very large, most circular
modes are stable. It is actually sufficient to assume(35) to be
valid for n=1 to make all circular modes stable. No further
analysis is required for the hyperbolic modes, as the instabil-
ity threshold is still given by inequality(34). We simply note
that the thresholds in both inequalities(34) and(35) are lin-
ear functions ofR/j, and that the stability threshold corre-

sponding to circular modes is higher than the stability thresh-
old for hyperbolic modes. Moreover, by Eq.(22), this latter
coincides with the locus of instability for linear modes.

In the limiting case whereR/j@1 inequality (29) holds
and so circular modes cannot induce instability. As shown in
the Appendix, the limit of stability%̄ in Eq. (33) approaches
the asymptotic value

%`
ª 1 +S ,

qc
D2

, s36d

where, is the unique positive root of

, tanh, = qc cotqc. s37d

The bound in Eq.(36) represents the supremum of all the
values of %n for which unstable, hyperbolic modes exist.
WhenR/j exceeds the critical value

SR

j
D*

ª

1

sinqc cosqc
,

which marks the transition between the regimes(29) and
(30), the hyperbolic modes smoothly replace the circular
modes in driving the bridge’s instability. The analysis in the
Appendix proves that forR/j near sR/jd* the limit of sta-
bility %̄ reads as

%I < 1 +
1

1 + qc tanqc
SR

j
sinqc cosqc − 1D . s38d

To obtain the complete stability diagram, we determined
numerically the values of the rootsx̄ to Eqs.(27) and (32),
for different values ofR/j. Collecting together the informa-
tion contained in Eqs.(22), (28), and (33) and using the
analytical estimates(35), (A3), and (38), we obtain the sta-
bility diagram of Fig. 7 in which the value%̄ of %n at mar-
ginal stability has been plotted against the ratioR/j, when
qc=35°: no relevant changes occur when a different value of
qc is chosen ins0,p /2d.

Clearly, it follows from Eq.(18) that the inequality%n. %̄
is satisfied for alln.1 provided it is satisfied forn=1. Thus,
all admissible modes(either circular or hyperbolic) are stable
as soon as the first is so. Figure 7 also shows the stabilizing
effect of a positive line tension whenqc[ s0,p /2d: the
larger isj, the smaller is%̄, and in the limit asj@R the size
L of the destabilizing modes diverges.

When the contact angleq[ sp /2 ,pd, only circular modes
need to be studied. An analysis that closely parallels the one
already performed forqc[ s0,p /2d (see the Appendix) here
leads us to the following asymptotic behaviors for the limit
of stability:

%I < 1 −S p

2qc
D2

¬ %0 for
R

j
! 1 s39d

and

%I < 1 −S ,

qc
D2

¬ %` for
R

j
@ 1, s40d

where, is the unique positive root ins0,p /2d of the tran-
scendental equation

FIG. 6. Graphical solution of Eq.(32). The curvea corresponds
to the case whereqc[ s0,p /2d and inequality(29) holds: Eq.(32)
has a unique positive rootx̄; liquid bridges satisfying inequality
(33) are unstable against hyperbolic modes. The curveb corre-
sponds to the case whereqc[ s0,p /2d and inequality(30) holds:
Eq. (32) has no positive root, but the graph of the functionfh is
entirely outsideSh, and so bridges satisfying inequality(34) are
unstable. Finally, the curvec corresponds to the case where
qc[ sp /2 ,pd: the functionfhsxd is negative whenxù0, and so no
hyperbolic mode exists.
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, tan, = − qc cotqc. s41d

Figure 8 illustrates the stability diagram forqc=125°: simi-
lar diagrams can be obtained for all values ofqc[ sp /2 ,pd.
We note that, at variance with the case whereqc[ s0,p /2d,
the value%̄ of %n at marginal stability ranges ins%0,%`d
which means that, regardless of the value ofR/j, it is always
possible to make a liquid bridge unstable, provided that%n is
chosen sufficiently small.

In other words, whenqc[ sp /2 ,pd, increasing the line
tension broadens the stability region, but there always sur-
vive unstable modes over a sizeL sufficiently large.

To compare the limits of stability for liquid bridges to the
classical Rayleigh’s instability for a full liquid cylinder in the
absence of line tension, we recall that this latter would take
place at%̄=1.

Figure 9 shows the graph of%` in the whole ranges0,pd
for qc and that of%0 for qc in sp /2 ,pd. It should be noted
that %`=1 for qc=p /2, as there Rayleigh’s instability must
be recovered in the limitR/j@1.

B. Negative line tension

The scenario we have just outlined applies when the line
tension is positive. When the line tension, and hencej, is
negative substantial changes occur, as we now proceed to
show. In fact, Eqs.(27) and (32) can be recast as

1 −S x

qc
D2

= −
R

uju
sinqcScosqc +

sinqc

qc
x tanxD = − fcsxd

s42d

and

1 +S x

qc
D2

= −
R

uju
sinqcScosqc −

sinqc

qc
x tanhxD = − fhsxd,

s43d

respectively.
Whenqc[ s0,p /2d, Eq. (42) has no positive root and the

graph of −fc lies entirely outsideQ: we conclude that circu-
lar modes are not admissible.

Hyperbolic modes reveal additional interesting features.
In fact, whenqc[ s0,p /2d, the numerical solution of Eq.
(43) shows that no roots exist ifR/ uju is less than a critical
value sR/ ujudc (see Fig. 10), while two roots exist when
R/ uju. sR/ ujudc.

In the former case, the bridge is always unstable since the
graph of −fh lies in the unstable setUh, whereas in the latter
case there exist two values of%n, namely, %̄ and %* . %̄,
such that liquid bridges are stable against hyperbolic modes
whenever

FIG. 7. In this stability diagram we plotted the value%̄ of %n at
marginal stability against the dimensionless ratioR/j, for qc=35°.
When a pairsR/j ,%nd lies in the setS, the liquid bridge is stable
against all modes, whereas when a pairsR/j ,%nd lies in the setU,
the liquid bridge is unstable. When R/j, sR/jd*
ª1/sinqc cosqc, linear, circular, and hyperbolic unstable modes
coexist, whereas, whensR/jd. sR/jd*, only hyperbolic unstable
modes survive. According to both(22) and(34), for sR/jd, sR/jd*
the straight-line segment%n=sR/jdsinqc cosqc marks the onset of
instability for both linear and hyperbolic modes(solid thin line).
However, the circular modes impose a stricter requirement on the
stability of liquid bridges(dotted line). In the limit wheresR/jd
@1 the instability region is bounded by the line%`, in agreement
with the analytic prediction(36).

FIG. 8. The value%̄ of %n at marginal stability is plotted against
the dimensionless ratioR/j, for qc=125°. When a pairsR/j ,%nd
lies in the setS, the liquid bridge is stable against all the modes we
have examined, whereas when a pairsR/j ,%nd lies in the setU, the
liquid bridge is unstable against circular modes. Along the curve of
marginal stability%̄ ranges between%0.0.488 and%`.0.79 and
so, regardless of the value ofR/j, unstable liquid bridges always
exist, provided%n is chosen sufficiently small.

FIG. 9. The graphs of%` againstqc[ s0,pd and of%0 against
qc[ sp /2 ,pd. We note that both%` and %0 approach the same
value 3/4 whenqc→p. While %` diverges whenqc→0, %0=0 at
p /2. Moreover,%`=1 for qc=p /2, as it should be, on the basis of
the classical Rayleigh instability in the absence of line tension.
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%̄ , %n , % * . s44d

The left inequality in(44) has the usual interpretation, and it
is satisfied for all modes, as long as it is satisfied forn=1.
More crucially, the right inequality can be satisfied only
when the line tension, though negative, is small enough in
absolute value. The same asymptotic analysis in the Appen-
dix shows that%̄ has formally the same limit as in Eq.(36)
with , satisfying Eq.(37), while %* diverges as

%* < S R

ujuD
2

for
R

uju
@ 1. s45d

Figure 11 shows the relevant stability diagram forqc=35°.
This diagram, which remains qualitatively unchanged for

all qc[ s0,p /2d, reveals that liquid bridges are conditionally
stable also when the line tension is negative. The intuitive
expectation that they would be totally unstable is valid only
when the absolute value of the line tension is sufficiently
large, that is, forsR/ ujud, sR/ ujudc. For sR/ ujud. sR/ ujudc,
alongside the upper limit of stability for the lengthL, which
arises from the lower bound in(44) and is related to the
classical Rayleigh instability, there is an upper limit on the
mode indexn arising from the upper bound in(44). This
means that, for any givenL such that the lower bound in(44)
is obeyed for alln, highly wiggly modes eventually make the
liquid bridge unstable; however, the corresponding wave-
length can be so short as to render these modes physically
irrelevant, as is definitely the case forR/ uju sufficiently large.
Moreover, other stabilizing mechanisms could be at work for

short wavelengths, especially those related to possible curva-
ture effects on the line tension, which are completely ne-
glected in our mathematical model.

Whenqc[ sp /2 ,pd, since the function −fcsxd is decreas-
ing and concave forx[ s0,p /2d, we conclude that Eq.(42)
has a unique rootx̄[ s0,p /2d if

R

uju
. S R

ujuD
*

ª

1

usinqc cosqcu
.

In this range, stability is guaranteed whenever

%n ù %I ª 1 −S xI

qc
D2

.

If R/ uju approachessR/ ujud* from below, solutions of Eq.
(42) exist, provided that −f c9s0d=−2sR/ ujudsin2 qc/qc is
larger than the second derivative −2/qc

2 of the marginal pa-
rabola, that is, provided that

R

uju
,

1

qc sin2 qc
s46d

(see Fig. 12).
In this case, it is possible to find a new critical value

sR/ ujudc of R/ uju such that Eq.(42) has two roots%̄ and%*
for sR/ ujudc,R/ uju, sR/ ujud*, while it has none for
R/ uju, sR/ ujudc. It turns out that requiring(46) to be satisfied
at R/ uju=sR/ ujud* is possible only if −cotqc.qc, inequality

which holds forqc[ sq̄c,pd, whereq̄c.160°.33.2.80 rad
is the root of −cotqc=qc in s0,pd. Accordingly, for

FIG. 10. Graphical solution of Eq.(43) for qc[ s0,p /2d. The
curvea has two intersections inQ with the marginal parabola(31),
whereas the curveb has no intersection at all with the same pa-
rabola. In the former case, liquid bridges for which%̄,%n,%* are
stable against hyperbolic modes, whereas in the latter case all liquid
bridges are unstable against hyperbolic modes.

FIG. 11. The values%̄ and %* of %n at marginal stability are
plotted against the dimensionless ratioR/ uju, for qc=35°. When a
pair sR/ uju ,%nd lies in the setS, the liquid bridge is stable against
hyperbolic modes, whereas the liquid bridge is unstable against
hyperbolic modes when a pairsR/ uju ,%nd lies in the setU. As ex-
plained in the text, circular and linear modes are ineffective in this
case. For any value ofR/ uju. sR/ ujudc.20.36, Eq.(43) has two
roots. Correspondingly, there are two values of%n, namely,%̄ and
%*, such that liquid bridges are stable whenever%̄,%n,%*.
Clearly, the values ofsR/ ujudc, %̄, and %* depend on the contact
angle qc. When qc=35° the common value of%̄ and %*, when
sR/ ujud=sR/ ujudc, is %n.14.08. Finally, the asymptotic value%`

formally coincides with that obtained in Eq.(36), with , satisfying
Eq. (37).
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sR/ ujudc,R/ uju, sR/ ujud*, only the liquid bridges such that
%̄,%n,%* are stable against circular modes. Finally, if
R/ uju, sR/ ujudc, Eq.(42) has no root, the graph of −fc always
lies in Uc, and so instability occurs whenever

0 , %n ø
R/uju

sR/ujudc
, 1. s47d

On the contrary, if inequality(46) is violated at R/ uju
=sR/ ujud*, Eq. (42) has no root forR/ uju, sR/ ujud*, and so
instability occurs whenever

0 , %n ø
R/uju

sR/ujud*
, 1. s48d

As an aside, we note that no further root to Eq.(42) exists in
sp /2 ,pd, since therefc is a decreasing function that attains
at x=p the same positive value as atx=0.

The analysis of Eq.(43) parallels that of Eq.(42), and so

we simply collect the relevant results. Forqc[ sp /2 ,q̄cd,
Eq. (43) has no positive root whenR/ uju, sR/ ujudc, it has
two positive roots whensR/ ujudc,R/ uju, sR/ ujud*, and it
has a unique root whensR/ ujud. sR/ ujud* (see Fig. 13). On

the contrary, forqc[ sq̄c,pd, Eq. (43) has no positive root
when R/ uju, sR/ ujud*, and it has a unique root when
sR/ ujud. sR/ ujud*.

In the former case, liquid bridges are unstable against
hyperbolic modes, regardless of the value of%n. When Eq.
(43) has two roots, there exist two values of%n, namely,%̄
and %* . %̄ such that liquid bridges are stable whenever
%̄,%n,%*. Finally, when there is a single root to Eq.(43),
liquid bridges are stable for 1,R/ uju / sR/ ujud* ,%n, %̄,
while hyperbolic modes cease to exist for
%n,R/ uju, sR/ ujud*.

In the stability diagram shown in Fig. 14 the value of%n
at marginal stability is plotted againstR/ uju, for qc=125°. As
soon assR/ ujud exceedssR/ ujud*, one branch of hyperbolic
modes is smoothly replaced by another branch of circular
modes. Although linear modes could here be effective, they
lie within the setU, and so they do not constitute an inde-
pendent source of instability. Had we chosen a value of the

contact angle insq̄c,pd, the stability diagram would be
equivalent to that shown in Fig. 14; the only difference
would be that a branch of circular modes is smoothly re-
placed by another branch of hyperbolic modes as soon as
sR/ uj u d exceedssR/ uj u d*. Needless to say,%̄ and%* depend
on bothR/ uju and the contact angleqc. The asymptotic value
of %̄ is still given by Eq.(40) with , as in Eq.(41), while %*
diverges as

% * < S R

ujuD
2

for
R

uju
@ 1.

Also whenqc[ sp /2 ,pd there is a critical valuesR/ uj u dc for
R/ uju below which all existing modes are unstable; this
means that a large, negative line tension causes instability of
all liquid bridges.

FIG. 12. Graphical solution of Eq.(42) for qc[ sp /2 ,q̄cd. The
curve a, which corresponds to the case whereR/ uju. sR/ ujud*
=1/usinqc cosqcu, has one intersection atsx̄,%̄d in Q with the mar-
ginal parabola(26); correspondingly, liquid bridges with%n. %̄ are
stable. Curve b corresponds to the case where
sR/ ujudc,R/ uju, sR/ ujud*; here, Eq. (42) has two solutions and
only liquid bridges for which%̄,%n,%* are stable against circular
modes. Finally, whenR/ uju, sR/ ujudc, curvec, Eq. (42) has no so-
lution and all liquid bridges are unstable against circular modes.

Whenqc[ sq̄c,pd no curve likeb exists: all graphs offc are likea
or c.

FIG. 13. Graphical solution of Eq.(43), when qc[ sp /2 ,q̄cd.
The curve a corresponds to the regime
sR/ ujud. sR/ ujud* ª1/usinqc cosqcu, where Eq.(43) has a unique
root. The curve b corresponds to the regime
sR/ ujudc,R/ uju, sR/ ujud*, where Eq.(43) has two roots, and, fi-
nally, the curvec corresponds to the regimesR/ ujud, sR/ ujudc,

where Eq.(43) has no root. Whenqc[ sq̄c,pd no curve likeb
exists: all graphs offh are likea or c.
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Figure 15 shows the graph ofsR/ uj u dc as a function ofqc

in the whole ranges0,pd. As a rule, the lowersR/ uj u dc, the
larger is the region of stability. The divergence ofsR/ uj u dc at
both qc=0 andqc=p follows from our assumption that the
line tension and the contact are mutually independent. In
fact, they both depend on the temperature and, on approach-
ing either the wetting transition, atqc=0, or the dewetting
transition, atq=p, our assumption is questionable. The sta-
bility of liquid bridges near wetting and dewetting transitions
will form the subject of a forthcoming paper[15].

IV. CONCLUSIONS

We applied the general criterion established in Ref.[9]
(see also Ref.[10] for more mathematical details) to the
stability of straight liquid bridges on a flat substrate in the
presence of line tension. Guided by the classical Rayleigh
instability, which should be exactly reproduced in this con-
text when the line tensiont vanishes and the contact angle
qc equalsp /2, one would expect that a liquid bridge be-
comes unstable when it is sufficiently slender. Intuitively, a
positive line tension is expected to have a stabilizing effect,
whereas a negative line tension is expected to have a desta-
bilizing effect. Here we proved some of these intuitive pre-
dictions to be false.

In our conclusions a prominent role is played by the con-
tact angleqc. Whenqc[ s0,p /2d, a positive line tension has
the expected stabilizing effect, as the stability region in the
phase diagram broadens when the line tension increases.
When qc[ sp /2 ,pd, however, even for a positive, increas-
ing line tension the limit of stability does not grow accord-
ingly: a liquid bridge definitely remains unstable when it is
sufficiently slender.

The most surprising results were found here when the line
tension is negative. In such a case, if the line tension is not
too large in absolute value, there exist a whole variety of
stable equilibrium configurations: liquid bridges are still un-
stable if too slender or subject to perturbations with suffi-
ciently short wavelengths, but both these limitations can fail
to be very stringent. This qualitative conclusion easily be-
comes quantitative through the combination of graphical and
numerical methods illustrated in Sec. III A. The same con-
clusion, however, is not valid for all values of a negative line
tension: when the absolute value of the line tension exceeds
a critical value, all possible liquid bridges become unstable.
Our study has shown that the generic claim that a negative
line tension would make all droplets unstable[6–8] is in
general false, as already feared[14], since there are at least
plenty of conditionally stable liquid bridges.

Other important issues of wetting science have not been
addressed here. As remarked in Sec. III B, we have treated
the contact angleqc and the line tensiong as independent
from one another. This hypothesis is acceptable only far from
the wetting or dewetting transition, whereqc.0 and qc
.p, respectively. In fact, when either phase transition is
approached, the dependence of bothqc and g on the tem-
perature becomes relevant, and it is no longer justified to
treatqc andg as mutually independent. The stability analysis
of liquid bridges near both wetting and dewetting transitions
will be the object of a future study[15].

FIG. 15. The value ofsR/ uj u dc againstqc[ s0,pd diverges as

qc→0 and asqc→p. For 0,qc,q̄c, sR/ uj u dc is computed on
hyperbolic modes, whereas it is computed on circular modes for

q̄c,qc,p. At qc=q̄c, sR/ ujudc=sR/ ujud* =1/ usin q̄c cosq̄cu. Here

q̄c>160°.33>2.80 rad is the root ins0,pd of the equation
−cotqc=qc.

FIG. 14. The value of%n at marginal stability is plotted against
the dimensionless ratioR/ uju, for qc=125°. The dashed line marks
the onset of instability caused by both linear and circular modes, the
dotted line corresponds to circular modes whenR/ uju. sR/ ujud*
ª1/usinqc cosqcu, and, finally, the solid line corresponds to hyper-
bolic modes. When 1.66.sR/ ujudc,R/ uju, sR/ ujud* two distinct
branches of hyperbolic modes exist while, as soon as
sR/ ujud. sR/ ujud*, one branch is replaced by the circular modes.
When a pairsR/ uju ,%nd lies in the setS, the liquid bridge is stable,
whereas it is unstable when a pairsR/ uju ,%nd lies in the setU. The
line %n=R/ ujusR/ ujud* divides the stable regionS into two subre-
gions: above this line both hyperbolic and circular modes exist;
below this line, only circular modes survive. Forqc=125° the value
of %n at marginal stability whenR/ uju=sR/ ujudc is %n.1.43; in
general it depends on the contact angleqc. On the contrary, the
value of %n at marginal stability whenR/ uju=sR/ ujud* is always
%n=1, regardless of the value ofqc. The asymptotic value%` for-
mally coincides with that obtained in Eq.(40), with , now satisfy-
ing Eq. (41).
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Finally, we are aware that our conclusions depend clearly
on the special geometry of droplets we considered. We ex-
pect that qualitatively different results could follow from ap-
plying our stability criterion to droplets of different shape or
sitting on substrates that fail to be flat.

APPENDIX: ASYMPTOTIC ANALYSES

We collect here the details of the asymptotic analyses in-
volved in Sec. III A. For convenience, we takeqc first in
s0,p /2d and then insp /2 ,pd

Caseqc[ „0,p /2…

To study the asymptotic behavior of the positive rootx̄ to
Eqs.(27) and(32) we adopt the method of dominant balance
(see, e.g., Ref.[16], Chap. 3). As a putative behavior for the
root x̄ whenR/j!1, we assume the following:

x̄ , aSR

j
Da

, sA1d

and then we examine the consequences of this assumption by
inspecting the leading terms in either Eq.(27) or Eq. (32). It
turns out that there is a unique value ofa which leads to a
consistent balance, yielding an accurate estimate of the
asymptotic behavior ofx̄.

By inserting the ansatz(A1) into Eq. (27), where botha
and a are positive, we suddenly arrive at the inconsistent
dominant balance

1 =
R

j
sinqc cosqc ! 1.

Sincex̄ cannot exceedp /2, a further possibility is assuming
a=0, that is, x̄.,,p /2. With this assumption Eq.(27)
turns into

1 −S ,

qc
D2

=
R

j
sinqcScosqc +

sinqc

qc
, tan,D ,

which is consistent only if,=qc, so that the left-hand side
vanishes. To gain further insight into the problem, we sup-
pose that

x̄ , qcF1 − bSR

j
DbG sA2d

and we seek for the admissible pairssb,bd, with bothb and
b positive. By inserting Eq.(A2) into Eq. (27), it readily
follows that b=1 and b=s1/2d tanqc. Thus, we arrive at
inequality Eq.(35).

Let nowR/j@1. To study Eq.(32) we assume that either
x̄,asR/jda, x̄,asR/jd−a, or x̄,,.0, wherea and a are
positive numbers to be determined. The first assumption

leads to the balance

1

qc
2SR

j
D2a

= −
sin2 qc

qc
SR

j
Dsa+1d

,

which is clearly inconsistent because of the sign opposition.
The second assumption leads to the inconsistent balance 1
=sR/jdsinqc cosqc, whereas the limiting behaviorx̄,, is
consistent, provided that, is the unique root of the transcen-
dental equation(37). To gain more insight into this asymp-
totics, we setx̄=,−asR/jd−d, for positivea and d, and we
match further terms in Eq.(32). By use of Eq.(37), we
obtain

1 +S ,

qc
D2

−
2

qc
2a,SR

j
D−d

= a
sin2 qc

qc
stanh, + ,s1 − tanh2 ,dd

3SR

j
Ds1−dd

,

where the right-hand side of Eq.(32) has been expanded near
x̄=,. Hence, the matching procedure yieldsd=1 and

a =
1 + s,/qcd2

ssin2 qc/qcdftanh, + ,s1 − tanh2 ,dg
,

whence, by Eq.(33), we express the limit of stability%̄ as

%̄ = 1 +S ,

qc
D2

−
2,

qc
aSR

j
D−1

+ OSR

j
D−2

. sA3d

Finally, we explore analytically the limiting case where
sR/jdsinqc cosqc→1 from either sides, to study the transi-
tion between the regimes Eqs.(29) and (30). When
sR/jdsinqc cosqc=1−«, a glance at Fig. 3 suffices to justify
the ansatzx̄,a«g in Eq. (27), for positive and yet unknown
coefficientsa andg. A consistent balance holds provided that
g= 1

2 and

a =
qc

Î1 + qc tanqc

.

Correspondingly,%̄ in Eq. (33) is given by

%̄ < 1 −
«

1 + qc tanqc
,

which is the same as Eq.(38). Formally, the same result is
also obtained for hyperbolic modes in the limit where
sR/jdsinqc cosqc=1+«.

Caseqc[ „p /2 ,p…

When R/j!1, it is not difficult to prove that we must
assumex̄→p /2 in such a way that tanx̄,asR/jd−b, with
a,b.0. Inserting this ansatz into Eq.(27), we readily obtain
that b=1, and
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a =

1 −S p

2qc
D2

sin2 qcS p

2qc
D .

Correspondingly,%̄ in inequality (33) reads as in Eq.(39).

A similar analysis in the limiting case whereR/j@1
shows thatx̄ behaves likex̄,,+asR/jd−1, where

a =
qcf1 − s,/qcd2g

sin2 qcftan, + ,s1 + tan2 ,dg

and , is the unique root ins0,p /2d of the transcendental
equation(41). This gives%̄ in (33) the asymptotic behavior
in Eq. (40).
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