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Sign of line tension in liquid bridge stability

Riccardo Rosso and Epifanio G. Virga
Dipartimento di Matematica, Istituto Nazionale di Fisica della Materia, Universita di Pavia, Via Ferrata 1, 27100 Pavia, Italy
(Received 15 March 2004; published 14 September 004

We apply the stability criterion we recently proposed for a general wetting functj@isls. Rev. E68,
012601(2003] to find out whether straight liquid bridges can be stable when subject to line tension of either
sign. Our main conclusion is that, even when the line tension is negative, a straight liquid bridge can be stable,
and so observable, provided that the line tension is not too large in absolute value.
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[. INTRODUCTION the eigenvalue problem involved in our criterion by combin-
ing both graphical and numerical methods. Finally, Sec. IV
The concept of line tension was introduced by Gilpbs  collects our conclusions. Most of the mathematical details
to describe the excess free energy arising along a three-phaledt out in the main body of the paper are explained in the
line, that is, along a curve where three distinct phases coexlosing Appendix.
ist. In Gibbs’s original formulation, the line tension was in-
troduced as the analog to the surface tension for a two-phase Il. MATHEMATICAL SETTING
surface. Line tension is relevant to equilibrium only at nano-
metric length scales, which have recently become accessible The line tension along a three-phase contact can be de-
to experiments[2-5. However, extracting information on fined in rather different ways. Here, we use a continuum
line tension from these experiments is a difficult task, and s@pproach where the excess free energy is modeled as a line
different results are available that attribute to the line tensionntegral on thecontact lineC, that is, the contour where the
values also differing by many orders of magnitutgpically, liquid droplet, the substrate, and the environment fluid are in
these values range from ']El@ to 10‘5 N) Moreover, even contact. Moreover, for simplicity, we assume that the line
the sign of the line tension is subject to controversy. Similatensiony is constant along. Thus, the free-energy func-
ambiguities also arise in theoretical models that indeed pretional 7 that governs the equilibrium of a liquid droplBtis
dict disparate values for the line tension and disagree on it@iven by
sign as well. It has been claimed that line tension cannot be
negative, by a stability argumeii6—8]. Recently, we pro- FlB]= Tf da+(7_w)f da+ yf ds, (1)
posed a general stability criterion for wetting functionals that s S c
g%unlg [g(?ll%olﬁxg gtr,eitnheR(ca?.rE(]eqxgnacE Zacgynzg?é\;ﬁ]gge;e%here >0 is the surface tension between the droplet and

stability analysis for a liquid bridge lying on a flat substrate,:2;wmr?hnemeenr:/ti:éur:?n‘i'nst tg;;?éf?ﬁgsojr;gged;?ﬂ?('jrr]oc?gt'
in the special case where the contact angleri®. We : b

proved that, although a negative line tension favors the ons ?arf: dniicggv;;g;hhee;ggstgfh tiT Tai:c%ousr:ttlgefofc:rr::ﬁg;c-
of instability, if its modulus is not too large, the instability " P a

occurs only for modes that are too wiggly to be admissiblef'on between the droplet and the substrate, which is assumed

within the range of validity of the model. It is our purpose lat and chemically homogeneous. Finays the area mea-

here to extend such a stability analysis to see the influence if:;ﬁeolr—:]illge:r-‘ls_: f;nan:z Izégﬁna;(igggizgovcgﬁ -trr?eafL”r:/cetional
the contact angle when it ranges in the whole inte(Qatr). grange eq

S . : F, we perturb a poinp€&€ dB into p,=p+eu+e?v, whereu
Liquid bridges are special droplets, which we expect to be ndv aEe regular Fi)/ectgr fields defFi)nefE)eB As explained in
unstable when they become too slender, as suggested by tﬁ :

. N - . B, [9], the second-order term in the perturbation is in-
gll?seséczlxi? l?;]g?hi!]it(;irk])tl(!:(); \}\t]h{gnstr;loeu'cdorllrt]:cete:n bfe ﬁrge PT9eed needed to preserve up to second order the constraints
and the line ¥ension is absent. The maior conclus?on of c)utrhat a droplet on a substrate is subject to. The Euler-Lagrange

. o . ; jor ¢ . equation of the functiongll) is obtained by setting the first
study is that liquid bridges with negative line tension can

also be stable, and so observable, provided that the line ter\{?”atlon oF of 7 equal to zero:

sion is not too large in absolute value. Nonetheless, as our

analysis will show, this conclusion, which here is rigorously oF [u] = de =0.

proved for liquid bridges, cannot be naively extended to €leo

other droplet morphologies, although one would expect it tdn the absence of gravity or other external fields, the Euler-

be qualitatively valid in general. Lagrange equation requireésto be a surface with constant
The paper is organized as follows. In Sec. I, we describenean curvature, which, in particular, makes a circular cylin-

the mathematical model employed here and we recall ouder an admissible solution. In general, along the contact line

stability criterion for the reader’s ease. In Sec. Ill we solveC, the following natural boundary condition is to be satisfied:
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% ®) U, = Sin YU (4)
No explicit contribution in the second variatiqi3) arises
9, from the adhesion potential: this follows from the con-
(a) ‘/ \ straintu,=0 imposed on the perturbatianon S- to guaran-
o vs tee thatu mapsS- onto another surface on the substr@ee

Refs.[9,1Q for further details.
According to Eq(4), we can replaceg with u, in Eq. (3)
to make the second variatioff.F a quadratic functional of
u,. 8°F is positive whenever its minimum on the unit sphere
FIG. 1. (a) Sketch of a liquid bridge lying on a flat, homoge- in L%(S) is positive. Thus, we subje(az}‘ to the normaliza-
neous substrate. The bridge is a straight circular cylindrical sectotjon constraint
of lengthL in the e, direction.(b) Every planar cross section of the
bridge orthogonal te, is a circular sector of radiuR, centered at 2
the pointO. The contact anglé. is the angle between the substrate uda=1,
and the bridge’s tangent plane along the contact indhe unit s
vectorpg is the conormal of on S, that is, the outward unit vector - which, since the liquid bridge is taken to be incompressible,

orthogonal toC on S. Finally, ¥ is the polar angle, which is often supplements the constraint on the average,of
employed below.

o

(5

f uda=0. (6)
S

TCOSO + 7—W= 7K;, (2)
where 3, is the contact angle which here is the angle be- As discussed in Ref9], the minimum of the functiona(3)
tween the substrate and the bridge’s tangent plane along thg the manifold(5) coincides with the minimum eigenvalue
contact lineC (see Fig. }, andx, is the geodesic curvature of . of the following problem:

C relative to the substratf9,11]. Since bothr and w are 1
taken.to be constant, E(Q), which is the celebrated Ypung Ay, + <M+ —)uy+ A=0 on S, )
equation, requires thdt. is constant along the contact lide R?

The stability of any equilibrium configuration for a drop

is related to the sign of the second variationffdefined as 1
Sir? 9.Vau, - vg— €Ul - = sin ¥, cosd.u, =0 alongC.

52.7:[U] = d_62 -0. (8)

Here, V¢ and A are, respectively, the surface gradient and
Precisely, the notion of stability employed throughout thisthe surface Laplacian defined &f a prime denotes differ-
paper is the one that would more properly be naroeal: entiation along the arclengthof C, and\ is the Lagrange
according to its definition, an equilibrium shagds said to  multiplier associated with the constrai(@). Moreover, the
be stable whenever the second variatiBeF is positive for  unit vector vg is the unit conormal of’ on S, that is, the
all admissible perturbations o (see, e.g., Ref.12], Chap. outward unit vector orthogonal t6 on S (see Fig. 1 Fi-
V). nally, the ratio

The only droplets we shall consider here are incompress-

ible liquid bridges that is, bodies resembling cylindric lenses &
with axis along a given direction, sag; (see Fig. 1 The
cross section of a bridge with every plane orthogonad, tis

: 9

3 IR

. . ) ; o which bears the physical dimensions of a length, is a central
a circular sector of radiuR; the contact lineC is split into T R G
two congruent straight-line segments of lengthClearly, in quantity in our development, in principle, likg it can have

9 9 9 Y. either sign. The free surfacg of the bridge can easily be

.th's casex,=0, and by.applylng the gener_al _results Obt""meddescribed in the cylindrical coordinate® and z shown in
in Ref. [9] we can write the second variation of the free-

energy functiona(l) as Fig. 1. formally,
S:={(9,2|9€[- I, 9),z€[0,L]}.
1
SF[ul= TL{WSU,,F— Qui}da+ fe { y(ul)? Here we set(d,2):=u,(9,2), for simplicity. Since
au 1Pu  Fu
- é cosd,. sin ﬁcuﬁ}ds, (3) V- ws= oy and A= o et 2
we can recast Eq$7) and(8) as
whereu, is the component of the perturbatienalong the 5 5
unit normalw to S, andu is related tou, on C through the 1au + Ju + <M+ i)uH\:O (10)
equation R?99% o7 R? ’
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Fu

1 au
= sif 9,— o
R 9o, 07

€00

1 Je
"R sin ¥, cosYU(,2) f Ug($)dd=0. (16)

9=, 0

=0. (11)  However, imposing Eq(12) amounts to settingiy() =0
and so the projection of E¢10) onto the eigenspace corre-
sponding tan=0 yieldsA =0 immediately. For higher modes,
inserting Eq.(15) into Eq. (10) yields

We think of the bridge as being infinite along its axis: in the
same spirit as the classical Rayleigh instability, we tteas
the length over which typical distortions of the bridge’s

shape take place, and so we require that U, + (uR?+1-0)u,=0,0n=1, (17)
u(9,0)=u(9,L)=0, O FE[0,9]. (12 where we have set
For simplicity, we also limit our attention to symmetric per- 2R\ 2
turbations, which satisfy the condition n=\ T ) (18)
a =0, 0ze[0,L]. (13 and an overdot stands for differentiation with respectto
Y| 9=0 Finally, by replacing Eq(15) in Eq. (11) we readily obtain

The cross section’s sizR is taken throughout as given, al- . & )

though it will enter our discussion only through two dimen- Sir? Ol (9c) + (EQ” = sindg cosdg |Un(dg) =0, D n=1,
sionless ratios, namelR/L andR/&. For most material$]|

is much smaller than any macroscopic length, and one would (19
be led to assume th&/|¢[>1. Here this assumption is not \yhere every function, obeys

made, as we also wish to consider the possibility et not

a macroscopic length. Rayleigh’s instability, which in a full u,(0) =0, (20
liquid cylinder happens wheh=2#R, will be taken as a
reference case below: in the absence of line tension, it shoul%S
be reproduced by a liquid bridge wheh=m/2.

a consequence of Ed.3).
Our purpose here is to find all the modes for which Eqgs.
(17)—«(20) possess a nontrivial solution with>0. If these
are not all possible modes, then the bridge will be found
Il STABILITY ANALYSIS unstable against the ones for whigh<0. Since the ratio
R/L is not fixed, we will label every mode byg,: our strat-
This section, which is divided into two parts, concerns theegy will be to find for each admissiblg, the corresponding
stability analysis of liquid bridges against perturbations sateigenvalueu. Guided by the classical Rayleigh instability,
isfying both the incompressibility constraiti6) and Egs. one would expect that fop,, sufficiently large, a bridge can
(12) and (13). In the first part, we suppos&>0 and prove always be made stable: our analysis will show the effect of
general results that are then specialized to the asymptotiine tension, and especially of its sign, on this expectation.
limits where either the line tension is very small or it is very  The solutions to Eqg17)—20) have different qualitative
large. In the second part, we study the case wiger®. behaviors, according to the sign of the parameter

o= uRZ+1-0,. (21)

A. Positive line tension Wheno,=0, the only nontrivial solution of Eq17) that also

Following the approach adopted by Roy and Schwartzatisfies Eq(20) is u,(1%) =B, with B a constant. The corre-
[13], we look for solutions to Eqg10) and(11) in the form  sponding mode depends only upprhereafter, we shall refer
0 to it as to alinear mode. The constar® can be determined

_ . (nm uniquely by imposing the constrai(B). Equation(19) gives

= + —

u(9,2) = () n% sm( L Z)””(ﬂ)' (14) the necessary conditions for this mode to exist, that is,

with n€ N. Since for a cylinder the incompressibility condi- <0 =1+uR2= R_ 29
tion (6) reads 0<en K Sin 9¢ oS Je. (22)

L de It follows from these equations that, ¢f,> 1, u is positive,
f dzf u(9,2d9=0, and so the corresponding linear modes are stable. On the
0 0 contrary, wherp,<1, it is possible to make the liquid bridge
we conclude from Eq(14) that only even modes occur, that unstable. What actually happens is decided by the right-hand
is, side of EQ.(22). When ¢ cosd.<0 no linear mode exists;
. when & cosd.>0 there are both stable and unstable linear
[ 2nm modes, and the latter prevail wheneVél, and hence the
u(ﬁ,z):uo(i})+2 S'”(Tz)un(ﬂ)' (15 strength of the line tensioty] is large enough. Thus, the
i analysis of linear modes can be summarized as follows: If
Moreover, the constraini) reduces to a restriction on the (R/§)sind;cosd.>1, then the admissible linear modes
lowest modeuy(), have p,>1 and are stable; if & (R/&)sind,cosd.<1,
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then the admissible linear modes hagg<1 and they are On
unstable.

When 0,>0, the solutions to Eq(17) that satisfy the
symmetry requiremen20) areu,(9)=A cosyo, ¥, where the
constantA is uniquely determined by Eq5): since the
boundary conditior{19) is homogeneousA plays no role in S
the following. We shall refer to these solutions as tireu- 14 ¢
lar modes. By inserting a circular mode into EG9), after
some algebraic manipulations we arrive at the condition

R sin g,
On= g sin 1‘}C<Cosﬁc + Tcxn tanxn> = f), (23) U

c

where we have set,:=\Jo,%. Similarly, wheno,<0 the | T
solutions to Eq(17) that also obey Eq20) are proportional D
to u,(9) =cosh/—a, . Hereafter, we will refer to these func-
tions as thehyperbolicmodes. When a hyperbolic mode is  FIG. 2. The marginal parabo(&6) divides the positive quadrant
inserted into Eq(19) we readily obtain Q into two setsS, and .. The pairs(x,,2,) that belong toS,
correspond to positive values @f, whereas the pairé,, 0,,) that
19cx tanhx ) = fr(X,) belong tol4, correspond to negative values of Given a value of
n n| = 'Th\\n/» . P
©n, When the rook,, of Eq.(23) is such thatx,, ¢,)) €U, the liquid
(24) bridge is unstable against the corresponding circular mode, while it
is stable if(x,,0,) €Sc. The parabolg26) is called marginal be-
where now we have set,:= \s“——a-nﬁc_ Had we also allowed cause it corresponds to marginal stability of the liquid bridge
the odd modes in Eq14), only a few specific circular modes against circular modes.
would have been selected by the boundary equatidy all
of which could be shown to be stable. Thus, our stabilityto the stability diagram of liquid bridges with both positive
analysis is not restricted by the choice of symmetric perturand negative line tension. Here we take 0.
bations made in Eq15). The equation of the marginal parabola for circular modes
For a givenp,, both Egs.(23) and (24) determine the s
admissible roots,,, which in turn, through Eq(21), deter-

R . sin
On= E sind,| cosd, -

c

2
mine the corresponding eigenvalpe 0,=1 _(ﬁ) . (26)
U,
2 c
X
pR? =0, - 11(3”) : (25 Whenever a paifx,, 0, that solves Eq(23) lies in the
Cc

region S, shown in Fig. 2, the corresponding circular mode
where the plus and the minus sign apply to circular and hyis stable. On the contrary, when a pék,,o,) lies in the
perbolic modes, respectively. For later reference, we indicateegioni/{,, the corresponding circular mode is unstable. The
by Q the positive quadrant in the,, ¢,) plane: pairs (x,, ¢, that lie on the marginal parabol@6) are ob-
tained by inserting Eq(26) into Eq. (23); the followin
Q= {(xn €n). % = 0,€0 = O}. equationythen reSL?Its:q( ) & ’
By Eg.(25), the loci in Q that correspond to a fixed value of «\2 R sin
(—) = E sin ﬂc<cosﬂc+

C

u are parabolas, and parabolas corresponding to different 1 —
values ofu never intersect each other, as they are obtained
from one another by translation along thgaxis. In particu- 27

lar, the marginal parabola obtained from E@25) when u .
=0 for either circular or hyperbolic modes divide into where the mode index has been dropped because the roots

two regions: the region underneath the marginal parabol&f Ed-(27) are independent of. Since the marginal parabola
hosts the pairdx,,0,) for which the associated mode is M Q is decreasing anfi, has separate increasing branches,
stable. Parabola25) is called marginal because it corre- the liquid bridge is stable against every circular mode for

sponds to marginal stability of the liquid bridge to eitherWhICh

circular or hyperbolic modes. The pairs,, 0,,) lying on the _ X \2

marginal parabola will play a special role in the graphical On=>eQ:=1- (5) , (28)

discussion of our stability analysis. They represent the points o ¢

where the graphs of the functiofigand f,, emanate in both wherex is the smallest root of Eq27), whenever there is at

the stable and the unstable manifolds: following the stabldeast one. In such a case, it follows from E@8) that all

branches of these graphs will identify the stable admissibleircular modes are stable provided that the onenfed is

modesg,,. stable. To seek, we consider two different regimes accord-
We now treat separately circular and hyperbolic modesing to whetherd. € (0,7/2) or 9.€ (w/2,); the limit case

combining the results of these parallel analyses will lead us},;=mw/2 was already discussed in Ref9]. When

ﬁlcxtanx) =fo(x),

c
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On On

1
1
I
1 Sh
1

U,

) Ty Tn

B
>
(2]

) ) ) FIG. 5. The parabol&3l) divides the positive quadra® into

FI_G. 3. TI_1e graph_lcal ;olutlon of E¢27) can be obtained by 0 setsS, andi4,,. The pairs(x,, 0,,) that belong taS,, correspond
seekl_ng the intersections i@ between the parabo_l@(i) and the 4 positive values of:, whereas the pairé,, 0,,) that belong td4,
function f, when bothd € (0,7/2) and >0 are given. Here we  qrrespond to negative values of For giveng,, when the positive
have plotted two graphs of the functioric(x,): one for  goiytionx, to Eq.(32) is such that(x,,o,) €U, then the liquid
(RI9sin 9. cosd<1 (solid curvg and the other for phgoe js unstable against the corresponding hyperbolic mode,
(R/é)sin 9 cosd.>1 (dashed curve In the former case, Ed27)  yhereas it is stable ifx,, ;) € Sy. The parabold31) corresponds
has a unique roat>0 whereas in the latter case it has none. to marginal stability of the liquid bridge against hyperbolic modes.

9:€(0,7/2), no intersection between the graph of the func-ihe range /2, ), so that the functiori.(x) attains its maxi-

tion f; and the parabole26) exists in the se for mum in (7/2,7) at x=, where it has the same, negative
R value as ak=0.
= sind, cosd, > 1 (29) To study the hyperbolic modes, we write the marginal
parabola in the form
(see Fig. 3. x |2
Moreover, again by the monotonicity &fin (0,7/2), we =1+ (;”) . (31
Cc

conclude that its graph lies in the stable maniféid Thus,

when the inequality29) holds, the smallest eigenvalug,, . . .
is strictly positive, and the bridge is stable against all circular € Parabola31) divides the quadrar@ into a stable region
modes. On the contrary, when Sh and an unstable regidi,, as sketched in Fig. 5.

By inserting Eq.(31) into Eq. (24) we arrive at

R
0< —sind,cosd <1 (30) x\2 R sin 9,
3 1 =3 sin | cos 9 = —-—xtanhx | = f,(x).
Cc C

Eqg. (27) possesses a unique solutive (0,9.), and(28) is (32)
the corresponding stability condition.

Equation(27) has a unique roat, & (0,7/2) also when  gjnce the marginal parabola is now increasingimwhile f,

Uc& (7/2,m), as shown in Fig. 4, and the stability threshold js gecreasing, the stability conditig@8) is here replaced by
formally coincides with(28). As an aside, we note that Eq.
(27) has no further rootg=0, whend.& (#/2,7). In fact, - 3 \2
Xtanx is a monotonically increasing function whemis in en>0=1 +<E) , (33
C

B wherex is now the unique root of Eq32), whenever it

exists. We now study EQ.(32) assuming first that
9.€(0,7/2). When inequality(29) holds, by plotting the
graph of the functiorf,, we readily conclude that Eq32)
has a unique positive root (see Fig. 6. Although a com-
parison between the threshol¢®8) and (33) would show
that hyperbolic modes impose a more stringent requirement
1+ on the stability of liquid bridges than circular modes, this is
I U, indeed the case only when both E@&7) and (32) possess
: T positive roots, which never happens. When inequdal)
/s zT T2 I, holds, which is the condition for a positive ragtof Eq. (23)
to exist, EQ.(32) has no positive root. Then, the graph of
FIG. 4. Whend.€(w/2,m) and £>0, Eq. (27) still has a  fn(Xy) lies entirely away from the stable s&f, and we con-
unique rootxe (0,7/2). clude that the hyperbolic modes for which

o
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On sponding to circular modes is higher than the stability thresh-
old for hyperbolic modes. Moreover, by E@2), this latter
Sh coincides with the locus of instability for linear modes.
In the limiting case wher&/&>1 inequality (29) holds
and so circular modes cannot induce instability. As shown in
Z/[h the Appendix, the limit of stability in Eq. (33) approaches
the asymptotic value
15 | ¢ \?
b)l a) Qw B 1+<§> , (36)
Cc
. Ty, where{ is the unique positive root of
| \
T \: ~ ¢ tanh( = 9, cot 9. (37)
C\\\ \ The bound in Eq(36) represents the supremum of all the
LAY values of g,, for which unstable, hyperbolic modes exist.
™ WhenR/ & exceeds the critical value
hical soluti f h d <B>— —1
FIG. 6. Graphical solution of Eq32). The curvea corresponds £ = sin 9, cos 9,

to the case wher@.€ (0,7/2) and inequality(29) holds: Eq.(32)
has a unique positive root liquid bridges satisfying inequality
(33) are unstable against hyperbolic modes. The cuyveorre-
sponds to the case whei® € (0,7/2) and inequality(30) holds:
Eq. (32) has no positive root, but the graph of the functifgnis
entirely outsideS;, and so bridges satisfying inequalitg4) are
unstable. Finally, the curve corresponds to the case where
V€ (7/2,m): the functionf,(x) is negative wherx=0, and so no
hyperbolic mode exists.

which marks the transition between the regin{@8) and
(30), the hyperbolic modes smoothly replace the circular
modes in driving the bridge’s instability. The analysis in the
Appendix proves that foR/ ¢ near(R/§)* the limit of sta-
bility ¢ reads as

R
+—— | —sind.cosV.—1]. 38
1+19Ctam‘}c(§ ¢ ¢ ) 38)
To obtain the complete stability diagram, we determined
numerically the values of the rootsto Eqgs.(27) and(32),
for different values ofR/ ¢. Collecting together the informa-

make the liquid bridge unstable. Finally, when the contaction contained in Eqgs(22), (28), and (33) and using the

e~1

R
0=sp,< E sing, cosv. <1 (34

angled. is in (7/2,7), EqQ. (32) has no positive root irQ:
since the functiorfy(x) is negative forx=0, no hyperbolic
mode exists.

analytical estimate§35), (A3), and(38), we obtain the sta-
bility diagram of Fig. 7 in which the value of ¢, at mar-
ginal stability has been plotted against the rd®icg, when

We need now to combine the results of our analysis for alllc=35°: no relevant changes occur when a different value of
separate modes to arrive at the full stability diagram. ThisJc IS chosen in(0,7/2). _
requires examining the role &/ & in the preceding conclu-  Clearly, it follows from Eq(18) that the inequality, > ¢
sions. We first focus attention on the limiting cases wherds satisfied for alh>1 provided it is satisfied fon=1. Thus,
either R/¢<1 or R/&>1. In particular, we are concerned all admissible modegeither circular or hyperbolicare stable
with the asymptotic behavior of the rortto either Eq(27) as soon as the flrSt iS.SO. Figu.re 7 also shows the Stab|||Z|ng
or Eq.(32). We defer the details of the asymptotic analysis toéffect of a positive line tension whew < (0,7/2): the
the Appendix; here we collect only the results of this analy-larger is¢, the smaller i, and in the limit ag> R the size
sis. L of the destabilizing modes diverges.

We first suppose that.€ (0,7/2) and thatR/¢{<1 so When the contact angl@ € (7/2,7), only circular modes
that the line tension is dominant and inequali8@) holds.  need to be studied. An analysis that closely parallels the one
Under these assumptions, the stability lingitin Eq. (33)  already performed fo). € (0,7/2) (see the Appendjxhere

becomes leads us to the following asymptotic behaviors for the limit

R of stability:

o= tanvf}c(—). (35) ( T )2 o R

& o=1 29, =0 for§<1 (39
Thus, when the line tension is very large, most circular
modes are stable. It is actually sufficient to ass&t to be and
valid for n=1 to make all circular modes stable. No further ¢ \? R
analysis is required for the hyperbolic modes, as the instabil- g=1- (3) =: 0" for F >1, (40)

Cc

ity threshold is still given by inequalitg34). We simply note
that the thresholds in both inequaliti€®l) and(35) are lin-  where{ is the unique positive root i0,#/2) of the tran-
ear functions ofR/£, and that the stability threshold corre- scendental equation
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R/¢
(R/&)*

FIG. 7. In this stability diagram we plotted the valgeof ¢, at
marginal stability against the dimensionless rai, for 9.=35°.
When a pair(R/ &, ¢,) lies in the setS, the liquid bridge is stable
against all modes, whereas when a g&fé¢,,) lies in the setd,
the liquid bridge is unstable. When R/¢(<(R/&)*
:=1/sin9, cosY,, linear, circular, and hyperbolic unstable modes
coexist, whereas, whe(R/¢) > (R/£)*, only hyperbolic unstable
modes survive. According to botR2) and(34), for (R/§) <(R/&)* FIG. 9. The graphs 0b againstd.€ (0,) and of 0° against
the straight-line segmeit, =(R/ ¢)sin J; cosdc marks the onset of o < (7/2, 7). We note that botre” and ° approach the same
instability for both linear and hyperbolic modgsolid thin ling.  yajye 3/4 whend.— 7. While o diverges whend,— 0, 0°=0 at
However, the circular modes impose a stricter requirement on the,/> \oreover,0™=1 for 9,= /2, as it should be, on the basis of

stability of liquid bridges(dotted ling. In the limit where(R/§)  the classical Rayleigh instability in the absence of line tension.
> 1 the instability region is bounded by the lig€, in agreement

with the analytic predictiori36).

Figure 9 shows the graph of” in the whole rang€0, )
for ¥, and that ofe® for 9, in («/2,7). It should be noted
ttant=- 9. cotd. (4D thatp*=1 for 9,==/2, as there Rayleigh's instability must
Figure 8 illustrates the stability diagram fog=125°: simi-  be recovered in the limiR/§>1.
lar diagrams can be obtained for all valuesfe (7/2,m).
We note that, at variance with the case whége (0,7/2),
the valuep of g, at marginal stability ranges if°,0”) The scenario we have just outlined applies when the line
which means that, regardless of the valu®og, it is always ~ te€nsion is positive. When the line tension, and hegces
possible to make a liquid bridge unstable, provided thais negative substantial changes occur, as we now proceed to

B. Negative line tension

chosen sufficiently small. show. In fact, Eqs(27) and(32) can be recast as
In other words, whend.€ (w/2,), increasing the line x \2 R sin 9,
tension broadens the stability region, but there always sur-1 - (3) == @ sin 19C<cosﬁc+ xtanx) =—f(x)
C C

vive unstable modes over a sikesufficiently large.
To compare the limits of stability for liquid bridges to the (42)

classical Rayleigh’s instability for a full liquid cylinder in the d

absence of line tension, we recall that this latter would take

lace ato=1. x\> R sin o,
P © 1+ (—) =-—sin ﬁc<cosﬂc - cxtanhx) =—fn(x),
5 Ue €] e
S (43
respectively.

Whend.€ (0,7/2), Eq.(42) has no positive root and the
graph of . lies entirely outsideQ: we conclude that circu-
lar modes are not admissible.

Hyperbolic modes reveal additional interesting features.
o LS In fact, whend.€(0,7/2), the numerical solution of Eq.

FIG. 8. The valuep of ¢, at marginal stability is plotted against (43) shows that no ro_ots exist R/|§| is less than .a critical
the dimensionless rati®/ &, for 9.=125°. When a paifR/ £, 0,,) value (R/[&))c (see Fig. 19 while two roots exist when
lies in the setS, the liquid bridge is stable against all the modes we R/|§| > (R/|§|)c-
have examined, whereas when a g&!£, 0,) lies in the set/, the In the former case, the bridge is always unstable since the
liquid bridge is unstable against circular modes. Along the curve ograph of -f, lies in the unstable sét,, whereas in the latter
marginal stabilityg ranges betweep®=0.488 andp”=0.79 and  case there exist two values @f, namely,o and ¢* > p,
so, regardless of the value B¢, unstable liquid bridges always such that liquid bridges are stable against hyperbolic modes
exist, providedp, is chosen sufficiently small. whenever
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| R/|¢]

(R/I€D.

FIG. 11. The value® and o* of g, at marginal stability are
plotted against the dimensionless ra¢|&|, for 9.=35°. When a
pair (R/|&,0,) lies in the setS, the liquid bridge is stable against
hyperbolic modes, whereas the liquid bridge is unstable against
hyperbolic modes when a paiR/|€,0,) lies in the setd. As ex-
plained in the text, circular and linear modes are ineffective in this
case. For any value d®/|¢{>(R/|&]).=20.36, Eq.(43) has two

FIG. 10. Graphical solution of Eq43) for 9.€(0,7/2). The  roots. Correspondingly, there are two valuesoqf namely,o and
curvea has two intersections i@ with the marginal parabolgl), o* such that liquid bridges are stable whenewex g,< o*.
whereas the curve has no intersection at all with the same pa- Clearly, the values ofR/|£])., ¢, and o* depend on the contact
rabola. In the former case, liquid bridges for whigk< o, < o* are angle 9. When 9,=35° the common value o® and ¢*, when
stable against hyperbolic modes, whereas in the latter case all liquigr/|¢))=(R/|¢)., is 0,=14.08. Finally, the asymptotic valug”
bridges are unstable against hyperbolic modes. formally coincides with that obtained in E(B6), with ¢ satisfying

Eq. (37).

o< <e*. (44) _ _
short wavelengths, especially those related to possible curva-
The left inequality in(44) has the usual interpretation, and it IUré effects on the line tension, which are completely ne-
is satisfied for all modes, as long as it is satisfiedrfer.. ~ 9lected in our mathematical model. _
More crucially, the right inequality can be satisfied only ~Whendc& (m/2,m), since the function f(x) is decreas-
when the line tension, though negative, is small enough i and concave fore (0,7/2), we conclude that Eq42)
absolute value. The same asymptotic analysis in the Apperlas a unique roate (0,7/2) if

dix shows thaip has formally the same limit as in E(36) R R\* 1
with € satisfying Eq.(37), while o* diverges as — > (—) =
&l \lgl)  Isind; cosdy
R\?2 R In this range, stability is guaranteed whenever
p* =|—| for —>1. (45)
€] €] . ( X )2
=p:=1-1—1 .
=20 9.

Figure 11 shows the relevant stability diagram fiy=35°.

This diagram, which remains qualitatively unchanged forlf R/|£ approachegR/[£)* from below, solutions of Eg.
all 9.€(0,7/2), reveals that liquid bridges are conditionally (42) exist, provided that £(0)=-2(R/|&])sir? 9./9 is
stable also when the line tension is negative. The intuitivdarger than the second derivative «%/of the marginal pa-
expectation that they would be totally unstable is valid onlyrabola, that is, provided that
when the absolute value of the line tension is sufficiently
large, that is, for(R/|€)<(R/|&]).. For (R/|&)>(R/|€)., E< ;
alongside the upper limit of stability for the length which € Ocsin 9
arises from the lower bound i¥4) and is related to the (see Fig. 12
classic_al Rayleigh_ instability, there is an upper limit on the In thié case, it is possible to find a new critical value
mode indexn arlsmg'from the upper bound i44). ThIS (RI|¢]), of R/|¢| such that Eq(42) has two rootso and o*
means that, for any giveinsuch that the lower bound {#4) for (RI|&).<R/|¢|<(R/|¢)* while it has none for
is obeyed for alh, highly wiggly modes eventually make the RI|¢| < (RI|&),. It turns out that requiring46) to be satisfied

liquid bridge unstable; however, the corresponding wave . . . : : .
length can be so short as to render these modes physicalfj R/ [€/=(R/[€)* is possible only if —cotd.> ¥, inequality

irrelevant, as is definitely the case fef|&| sufficiently large. ~ which holds ford. € (9, m), whered,=160°.33=2.80 rad
Moreover, other stabilizing mechanisms could be at work foris the root of —cotd.=dJ, in (0,m). Accordingly, for

(46)
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On On
1
o™
ﬁA
S, Sh
b) Uy,
c)
1 c)
Tn
i Tn _
b Je FIG. 13. Graphical solution of Eq43), when 9.€ (7/2,3;).
The curve a corresponds to the regime

FIG. 12. Graphical solution of Eq42) for d.€ (7w/2,9¢). The  (R/|)> (R/|&)* :=1/|sin 9, cosd|, where Eq.(43) has a unique
curve a, which corresponds to the case wheRé|é > (R/|&])* root. The curve b corresponds to the regime
=1/|sin 9. cosd|, has one intersection &, ) in Q with the mar-  (R/|&)).<R/|g < (R/|&)*, where Eq.(43) has two roots, and, fi-
ginal parabolg26); correspondingly, liquid bridges with,,> o are nally, the curvec corresponds to the regiméR/|€) < (R/|€)).,
stable. ~ Curve b corresponds to the case where where Eq.(43) has no root. Whend,& (9, ) no curve likeb
(R/|&))c<R/|&[<(R/[¢))*; here, Eqg.(42) has two solutions and  exists: all graphs ofj, are likea or c.
only liquid bridges for whichp < ¢, < p* are stable against circular
modes. Finally, wheiiR/|¢ < (R/|€))., curvec, Eq. (42) has no so-
lution and all liquid bridges are unstable against circular modes
When 9. & (9, ) no curve likeb exists: all graphs of. are likea
or c.

In the former case, liquid bridges are unstable against
hyperbolic modes, regardless of the valueggf When Eq.
(43) has two roots, there exist two values @f, namely,o
and o* >p such that liquid bridges are stable whenever
o< p,<p*. Finally, when there is a single root to E@t3),
liquid bridges are stable for <R/|&/(R/|&)* <eon<e,
while  hyperbolic modes cease to exist for
2n<R/|§ <(R/|¢)*.

In the stability diagram shown in Fig. 14 the value@f

(RI1€)<R/|& < (R/|&)*, only the liquid bridges such that
o<p,<p* are stable against circular modes. Finally, if
R/|& < (R/|&). Eg.(42) has no root, the graph offzalways
lies in U, and so instability occurs whenever

RIl¢] at marginal stability is plotted againBt |£|, for 9,=125°. As
0<o,< (47)  soon as(R/|§)) exceedR/|&)*, one branch of hyperbolic
(RI[€])e modes is smoothly replaced by another branch of circular

e : g modes. Although linear modes could here be effective, they
O 5, ot I el vkt LIS i h S ond 20y o ot corsit an e
instability occurs whenever pendent source of instability. Had we chosen a value of the
contact angle in(9.,), the stability diagram would be
R/|g equivalent to that shown in Fig. 14; the only difference
(RI|&)* <1 (48)  \would be that a branch of circular mo_des is smoothly re-
placed by another branch of hyperbolic modes as soon as
As an aside, we note that no further root to Ep) exists in  (R/|£|) exceedgR/|£|)*. Needless to say ande* depend
(w/2,m), since theref is a decreasing function that attains on bothR/|£ and the contact anglé.. The asymptotic value

0<o,=

at x=m the same positive value as»at0. of o is still given by Eq.(40) with ¢ as in Eq.(41), while o*
The analysis of Eq(43) parallels that of Eq(42), and so  diverges as

we simply collect the relevant results. FO€ (7/2,9,), R\2 R

EqQ. (43) has no positive root wheR/|& < (R/|€])., it has o* =~ (—) for — > 1.

two positive roots whenR/|).<R/|§<(R/|§)*, and it I I

has a unique root whe(R/|¢]) > (R/[&])* (see Fig. 18 On  pjgq whend, € (m/2,) there is a critical valu¢R/|&|), for

the contrary, ford. € (9, ), Eq. (43) has no positive root R/ |&§) below which all existing modes are unstable; this
when R/|§<(R/|g)*, and it has a unique root when means that a large, negative line tension causes instability of
(R/1&)> (R/|&)*. all liquid bridges.
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on (B/ID)e
s
u
1431==
o= _/)‘g L T T R P PP T YT PP Ty
- R/l
B/ED (R/IED*
3.156 1
FIG. 14. The value op,, at marginal stability is plotted against
the dimensionless ratiB/|¢, for 9,=125°. The dashed line marks 0 e
the onset of instability caused by both linear and circular modes, the
dotted line corresponds to circular modes wHeH¢ > (R/|&))* FIG. 15. The value ofR/|£]). ag_ainstﬁce(o,w) diverges as

:=1/|sin 9, cosd|, and, finally, the solid line corresponds to hyper- 9.—0 and asd,— 7. For 0< 9.< 9, (R/|&]). is computed on

EOHC rrrodes.f Wrren t-ei_e(R/|§|)(jc<R/|§‘_<t(R/|ﬁ|_)l* two distinct  pyperholic modes, whereas it is computed on circular modes for
ranches of hyperbolic modes exist while, as soon asg v _ -y
(R/|€)>(R/|&)*, one branch is replaced by the circular modes.ﬁc<ﬁ°<f' At 9c= e, (R/|§D°_(R/‘§|)_ =1/[sin 9 cos I nge
When a pai(R/|], 0,) lies in the setS, the liquid bridge is stable, ~Yc=160°.33=2.80 rad is the root in(0,m) of the equation
whereas it is unstable when a péR/|&,0,) lies in the setd. The —cotd=Jc.

line ,=R/|g(R/|&)* divides the stable regio into two subre-

gions: above this line both hyperbolic and circular modes exist; In our conclusions a prominent role is played by the con-
below this line, only circular modes survive. Fog=125° the value  tact angled.. Whend.€ (0,w/2), a positive line tension has

of g, at marginal stability wherR/|&=(R/|&). is 0,=1.43; in  the expected stabilizing effect, as the stability region in the
general it depends on the contact angle On the contrary, the phase diagram broadens when the line tension increases.

value of ¢, at marginal stability wherR/|¢|=(R/|¢))* is always ~ When &.€ (w/2,1), however, even for a positive, increas-

2n=1, regardless of the value df. The asymptotic valug™ for- ing line tension the limit of stability does not grow accord-
mally coincides with that obtained in EG10), with £ now satisfy-  ingly: a liquid bridge definitely remains unstable when it is
ing EQ. (41). sufficiently slender.

The most surprising results were found here when the line
Figure 15 shows the graph @R/|£|). as a function of,  tension is negative. In such a case, if the line tension is not
in the whole rangd0,). As a rule, the lowelR/|¢|)., the  too large in absolute value, there exist a whole variety of
larger is the region of stability. The divergence(Bf |¢|). at  stable equilibrium configurations: liquid bridges are still un-
both 9,=0 andd,= follows from our assumption that the stable if too slender or subject to perturbations with suffi-
line tension and the contact are mutually independent. Igiently short wavelengths, but both these limitations can fail
fact, they both depend on the temperature and, on approact® be very stringent. This qualitative conclusion easily be-
ing either the wetting transition, a¥,=0, or the dewetting comes quantitative through the combination of graphical and
transition, at9=1r, our assumption is questionable. The sta-numerical methods illustrated in Sec. Ill A. The same con-
bility of liquid bridges near wetting and dewetting transitions clusion, however, is not valid for all values of a negative line
will form the subject of a forthcoming papét5]. tension: when the absolute value of the line tension exceeds
a critical value, all possible liquid bridges become unstable.
Our study has shown that the generic claim that a negative
IV. CONCLUSIONS line tension would make all droplets unstalji&-8| is in
general false, as already feargld!], since there are at least
We applied the general criterion established in R8f.  plenty of conditionally stable liquid bridges.
(see also Ref[10] for more mathematical detajl¢o the Other important issues of wetting science have not been
stability of straight liquid bridges on a flat substrate in theaddressed here. As remarked in Sec. Il B, we have treated
presence of line tension. Guided by the classical Rayleiglthe contact angla}, and the line tensiory as independent
instability, which should be exactly reproduced in this con-from one another. This hypothesis is acceptable only far from
text when the line tensiom vanishes and the contact angle the wetting or dewetting transition, wher@,=0 and 3,
¥ equalsw/2, one would expect that a liquid bridge be- =, respectively. In fact, when either phase transition is
comes unstable when it is sufficiently slender. Intuitively, aapproached, the dependence of bdthand y on the tem-
positive line tension is expected to have a stabilizing effectperature becomes relevant, and it is no longer justified to
whereas a negative line tension is expected to have a dest@eatd, andy as mutually independent. The stability analysis
bilizing effect. Here we proved some of these intuitive pre-of liquid bridges near both wetting and dewetting transitions
dictions to be false. will be the object of a future studpl5].
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Finally, we are aware that our conclusions depend clearlyeads to the balance
on the special geometry of droplets we considered. We ex-
pect that qualitatively different results could follow from ap- 1[(R\>*  sir? 9. R\«?
plying our stability criterion to droplets of different shape or 92 E == 9 E '
sitting on substrates that fail to be flat. ¢ ¢

which is clearly inconsistent because of the sign opposition.
APPENDIX: ASYMPTOTIC ANALYSES The second assumption leads to the inconsistent balance 1
=(R/ §)sin ¥, cosd,, whereas the limiting behaviot~ ¢ is
We collect here the details of the asymptotic analyses ineonsistent, provided thdtis the unique root of the transcen-
volved in Sec. Il A. For convenience, we takg first in dental equatior{37). To gain more insight into this asymp-
(0,7/2) and then in(#/2,m) totics, we seix=¢—a(R/&) %, for positivea and 5, and we
match further terms in Eq(32). By use of Eq.(37), we

Cased.€(0,7/2) obtain

i i itive rac €\ 2[R\ s,
To study the asymptotic behavior of the positive radb 1 ( ) _ —a€< ) —a “(tanh¢ + £(1 - tanR €))

Egs.(27) and(32) we adopt the method of dominant balance A 02 ¢ O
(see, e.g., Ref.16], Chap. 3. As a putative behavior for the (1-6)
root x whenR/£<1, we assume the following: X(B)
§ L
_ R\« . .
X~ a(E) , (A1) where the right-hand side of E(B2) has been expanded near

x={. Hence, the matching procedure yieléls1 and

and then we examine the consequences of this assumption by 1+ (0/9)?

inspecting the leading terms in either Eg7) or Eq.(32). It a=-— ~ ,
turns out that there is a unique value @fwhich leads to a (sif” 9/ do)[tanh( + (1~ tantt ()]
consistent balance, yielding an accurate estimate of the - e
asymptotic behavior o, whence, by Eq(33), we express the limit of stabilitp as

By inserting the ansat@Al) into Eq. (27), where botha 2 5 1 -

and o are positive, we suddenly arrive at the inconsistent o=1 +<£> - —€a<5) ¥ O(B) _ (A3)
dominant balance 9/ 9. \ € 13

Finally, we explore analytically the limiting case where
(R/¢)sin 9. cosd.— 1 from either sides, to study the transi-
tion between the regimes Eqg29) and (30). When
(R/¢)sin 9. cosd.=1-¢, a glance at Fig. 3 suffices to justify

SinceX cannot exceedr/2, a further possibility is assuming the ansatx~ae” in Eq. (27), for positive and yet unknown
a=0, that is,x=¢< /2. With this assumption Eq27) coefficientsa andvy. A consistent balance holds provided that

1
turns into y=3 and

R
1:Esinﬁccosﬁc< 1.

L ﬁ Z_B ino 5 sinﬁC€ ¢ a:’L—C_
- 5 _gsm o| cosY. + 9 tant |, V1 +J . tand,

which is consistent only i£=9,, so that the left-hand side _°resPondinglye in Eq.(33)is given by

vanishes. To gain further insight into the problem, we sup- .

ose that D~1-— <
P € 1+ 9 tand,’
B
X~ ,30[1 —b<B> } (A2)  Wwhich is the same as E¢38). Formally, the same result is
§ also obtained for hyperbolic modes in the limit where

(R/&)sin 9, cosI,=1+e.
and we seek for the admissible palls 8), with bothb and
B positive. By inserting Eq(A2) into Eq. (27), it readily
follows that =1 andb=(1/2) tand.. Thus, we arrive at
inequality Eq.(35). When R/ (<1, it is not difficult to prove that we must

Let nowR/ &> 1. To study Eq(32) we assume that either assumex— «/2 in such a way that tax~a(R/ &)™, with
x~a(R/&*, x~a(R/&™, or x~£>0, wherea and @ are  a,3>0. Inserting this ansatz into E¢R7), we readily obtain
positive numbers to be determined. The first assumptiothat 3=1, and

Cased.E(w/2,)
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(55)
1_ _
20,

. v
4 1%(2_19(;)

a=

Correspondinglyg in inequality (33) reads as in Eq39).

PHYSICAL REVIEW EO, 031603(2004

A similar analysis in the limiting case where/&>1
shows thai behaves likex~ ¢ +a(R/ &)1, where

1 = (€/9)°]
a=—
sir? 9Jtan€ + £(1 + tarf €)]
and ¢ is the unique root in(0,7/2) of the transcendental

equation(41). This givesg in (33) the asymptotic behavior
in Eq. (40).
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